首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5415篇
  免费   424篇
  国内免费   9篇
  2023年   14篇
  2022年   11篇
  2021年   67篇
  2020年   69篇
  2019年   75篇
  2018年   118篇
  2017年   109篇
  2016年   147篇
  2015年   263篇
  2014年   303篇
  2013年   359篇
  2012年   504篇
  2011年   447篇
  2010年   250篇
  2009年   245篇
  2008年   357篇
  2007年   294篇
  2006年   273篇
  2005年   276篇
  2004年   229篇
  2003年   232篇
  2002年   175篇
  2001年   147篇
  2000年   129篇
  1999年   118篇
  1998年   42篇
  1997年   52篇
  1996年   26篇
  1995年   23篇
  1994年   27篇
  1993年   22篇
  1992年   46篇
  1991年   42篇
  1990年   35篇
  1989年   35篇
  1988年   36篇
  1987年   28篇
  1986年   27篇
  1985年   22篇
  1984年   13篇
  1983年   19篇
  1982年   13篇
  1979年   12篇
  1978年   13篇
  1977年   11篇
  1976年   14篇
  1975年   8篇
  1974年   8篇
  1972年   10篇
  1971年   9篇
排序方式: 共有5848条查询结果,搜索用时 171 毫秒
31.
32.
The soluble tubulin of human cerebral cortex, as assessed by [3H]colchicine binding of the 100,000g supernatant fraction, decreases drastically with age, 75 percent from age 0 to age 90. There is also a considerably lower concentration of high molecular weight proteins in the soluble fraction of postmortem human cerebral cortex than in that of nonhuman species. Human brain tubulin can be polymerized into microtubules with DEAE-dextran. The DEAE-dextran induced microtubules are stable to cold temperature (4°) and calcium. However, in the presence of 1 M glutamate, the microtubules become cold labile and depolymerize at 4°. Thus we have developed a novel method for purifying polymerization competent tubulin from fresh or frozen human cerebral cortex. Human brain tubulin purified by our novel method is very similar to tubulin from the brains of other mammals in molecular weight, amino acid composition, polymerization-depolymerization parameters, and structural dimensions of the microtubules formed.Some aspects of this work have been published as an abstract in 1981. Fed. Proc. 40:1548.  相似文献   
33.
Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears the way for in-depth evolutionary hypothesis testing in one of the most speciose clades of predators.  相似文献   
34.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   
35.
PDZ domain‐containing proteins (PDZ proteins) act as scaffolds for protein–protein interactions and are crucial for a variety of signal transduction processes. However, the role of PDZ proteins in organismal lifespan and aging remains poorly understood. Here, we demonstrate that KIN‐4, a PDZ domain‐containing microtubule‐associated serine‐threonine (MAST) protein kinase, is a key longevity factor acting through binding PTEN phosphatase in Caenorhabditis elegans. Through a targeted genetic screen for PDZ proteins, we find that kin‐4 is required for the long lifespan of daf‐2/insulin/IGF‐1 receptor mutants. We then show that neurons are crucial tissues for the longevity‐promoting role of kin‐4. We find that the PDZ domain of KIN‐4 binds PTEN, a key factor for the longevity of daf‐2 mutants. Moreover, the interaction between KIN‐4 and PTEN is essential for the extended lifespan of daf‐2 mutants. As many aspects of lifespan regulation in C. elegans are evolutionarily conserved, MAST family kinases may regulate aging and/or age‐related diseases in mammals through their interaction with PTEN.  相似文献   
36.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   
37.
A mechanosensitive, visco‐poroelastic polymer ion pump that can rapidly establish a dense electrical double layer via mechanical pressure, thereby significantly enhancing output performance of an ionic triboelectric nanogenerator (iTENG), is described. A working mechanism of an iTENG using a highly mechanosensitive, visco‐poroelastic ion pump is suggested and the optimal characteristics of the polymer ion pump are reported by investigating optical, mechanical, electrical, and electrochemical properties. Surprisingly, the pressure sensitivity of the iTENG reaches 23.3 V kPa?1, which is tens of times the record value. To achieve controlled high‐frequency pulses from an iTENG, kinematic systems using a gear train and a cam are integrated with a single grounded iTENG, which produces a maximum of 600 V and 22 mA (≈2.2 W cm?2) at an input frequency of 1.67 Hz; after power transforming, those values are converted to 1.42 V and 225 mA. A capacitor of 1 mF can be fully charged to 2 V in only 60 s, making it possible to continuously operate a wireless‐communicating self‐powered humidity sensor. Also, due to the high transparency and deformability of the polymer ion pump, a self‐powered transparent tactile sensor is successfully assembled using a 5 × 5 iTENG array.  相似文献   
38.
Pyrethroid insecticides have been effective and powerful for controlling mosquitoes. However, abuse of these insecticides increases the number of resistant mosquitoes. In this study, Culex pipiens pallens and Aedes koreicus were collected from an artificial reservoir in the vicinity of a populated area in Korea, which is also a migratory bird catchment area. To monitor resistance to pyrethroid insecticides in mosquitoes, genomic DNA from the collected mosquitoes was sequenced for the kdr mutation in the voltage‐gated sodium channel (VGSC) gene. As a result, three samples with homozygous resistance (17.6%) and one with heterozygous resistance (5.9%) were found among 17 Cx. pipiens pallens specimens. One of the samples had a unique sequence at the amplified VGSC region. Of the 15 Ae. koreicus, no insecticide resistant individuals were found. In Korea, this is the first report of kdr genetic traits in Ae. koreicus and Cx. pipiens pallens and of a unique VGSC allele in Cx. pipiens pallens. Further investigation is needed to monitor the kdr resistance of these species in Korea and to determine how the unique sequence found in Cx. pipiens pallens is related to insecticide resistance.  相似文献   
39.
Active hemostatic agents can play a crucial role in saving patients’ lives during surgery. Active hemostats have several advantages including utilization of natural blood coagulation and biocompatibility. Among them, although human neutrophil peptide‐1 (HNP‐1) has been previously reported with the hemostatic mechanism, which part of HNP‐1 facilitates the hemostatic activity is not known. Here, a partial peptide (HNP‐F) promoting hemostasis, originating from HNP‐1, has been newly identified by the blood coagulation ability test. HNP‐F shows the best hemostatic effect between the anterior half and posterior half of peptides. Moreover, microscopic images show platelet aggregation and an increase in the concentration of platelet factor 4, and the scanning electron microscope image of platelets support platelet activation by HNP‐F. Thromboelastography indicates decreased clotting time and increased physical properties of blood clotting. Mouse liver experiments demonstrate improved hemostatic effect by treatment of peptide solution. Cell viability and hemolysis assays confirm the HNP‐F's biosafety. It is hypothesized that the surface charge and structure of HNP‐F could be favorable to interact with fibrinogen or thrombospondin‐1. Collectively, because HNP‐F as an active peptide hemostat has many advantages, it could be expected to become a potent hemostatic biomaterial, additive or pharmaceutical candidate for various hemostatic applications.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号